Measuring Risk Importance in a Dynamic PRA Framework

D. Mandelli, Z. Ma, C. Parisi, A. Alfonsi, C. Smith

diego.mandelli@inl.gov
Work Summary

• Risk Importance Measures (RIMs) in PRA
 – Fusel-Vessely, Risk Achievement Worth
 – Applied to Minimal Cut Sets

• Extension of classical RIMs for Dynamic PRA data
 – Large number of simulated accident scenarios

• Application to PWR LB-LOCA
 – Classical vs. Dynamic PRA
Classical RIMs from ET/FT Data

- All classical RIMs are calculated by determining:
 - R_0: nominal Core Damage Probability (CDP)
 - R_i^-: CDP for basic event i assumed to be perfectly reliable
 - R_i^+: CDP for basic event i assumed failed

- RIMs:
 - Risk Achievement Worth (RAW): $RAW_i = \frac{R_i^+}{R_0}$
 - Risk Reduction Worth (RRW): $RRW_i = \frac{R_0}{R_i^-}$
 - Birnbaum (B): $B_i = R_i^+ - R_i^-$
 - Fusel-Vessely (FV): $FV_i = \frac{R_0 - R_i^-}{R_0}$
Classic RIMs from Simulation-Based Data

• Dynamic PRA:
 – Large number of simulated accident scenarios
 – Timing/sequencing of events is dictated by:
 • System control logic
 • Sampled parameters
 – Sampled parameters are analogous of Basic Events

• Possible approaches:
 1. Perform an analysis for R_o and for each basic event i determine R_i^- and R_i^+
 • For N basic events, $2N + 1$ analyses are required
 • Tremendously computationally expensive
 2. Determine R_i^- and R_i^+ from the simulations generated to calculate R_o
Classic RIMs from Simulation-Based Data

- How can R_0, R_i^+, R_i^- be determined from simulation-based data sets?
- Define for each basic event i (sampled parameter):
 - I_i^- region where basic event i is assumed to be perfectly reliable
 - I_i^+ region where basic event i is assumed failed

\[
\text{Basic event perfectly reliable} \quad \text{pdf}_i \quad \text{Basic event assumed failed} \quad \text{Basic event assumed failed} \quad \text{Basic event perfectly reliable}
\]

\[
\begin{align*}
I_i^- & \quad \text{e.g., Grid recovery time} \\
I_i^+ & \quad \text{e.g., EDG failure time}
\end{align*}
\]
Classic RIMs from Simulation-Based Data

- Determine R_0, R_i^+, R_i^- for each basic event i (Monte-Carlo case):

 $R_0 = \frac{N_{CD}}{N}$

 $R_i^+ = \frac{N_{CD, x_i \in I_i^+}}{N_{x_i \in I_i^+}}$

 $R_i^- = \frac{N_{CD, x_i \in I_i^-}}{N_{x_i \in I_i^-}}$

- Note: special attention needs to be given to the sampling strategy.
Classic RIMs from Simulation-Based Data

- **Testing:**
 - Several *analytical tests* have been developed for different configurations
 - Parallel/series
 - Stand-by
 - K out of N
 - Initial comparison with SAPHIRE on more advanced cases has been started
 - Perfect agreement within statistical error
Application

• Test case:
 – 3-loop PWR system
 – Large break LOCA (LB-LOCA)

• Systems considered:
 – Accumulators (ACCs)
 – Low Pressure Injection System (LPI)
 – Low Pressure Recirculation (LPR)

• Scope of the analysis:
 – Validation step
 – Measure differences between Classical and Dynamic PRA analyses
Application

Set of basic events and associated probabilities

RAVEN coupled with RELAP5-3D

Comparison Metrics:
- CD probability
- Risk Importance of SSCs
- Event sequence probability

Associate each simulated scenario to a specific ET branch

SAPHIRE
Results

• CD probability:
 – Dynamic PRA (RAVEN-RELAP5): 8.24 E-3
 – Classical PRA (SAPHIRE): 8.13 E-3

• Event sequence probabilities:

<table>
<thead>
<tr>
<th>IE</th>
<th>ACC</th>
<th>LPI</th>
<th>LPR</th>
<th>ID</th>
<th>Out</th>
<th>Branch Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAPHIRE</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>0.99187</td>
</tr>
<tr>
<td>2</td>
<td>CD</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>0.99176</td>
</tr>
<tr>
<td>3</td>
<td>CD</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>0.99176</td>
</tr>
<tr>
<td>4</td>
<td>CD</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>0.99176</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RAVEN</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>0.99176</td>
</tr>
<tr>
<td>2</td>
<td>CD</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>0.99176</td>
</tr>
<tr>
<td>3</td>
<td>CD</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>0.99176</td>
</tr>
<tr>
<td>4</td>
<td>CD</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>0.99176</td>
</tr>
</tbody>
</table>

Success criteria require 2 out of 2 ACCs to function
1 ACC is actually sufficient, but …
Results

- CD probability
 - Dynamic PRA (RAVEN-RELAP5): 8
 - Classical PRA (SAPHIRE): 8.13 E-3

- Event sequence probabilities:
 - LPR: 7.27 E-3
 - LPI: 8.12 E-4
 - SAPHIRE: 4.80 E-5
 - RAVEN: 0.99187

- Branch Probability

<table>
<thead>
<tr>
<th>IE</th>
<th>ACC</th>
<th>Branch Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SAPHIRE</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
<td>0.99187</td>
</tr>
<tr>
<td>2</td>
<td>CD</td>
<td>7.27 E-3</td>
</tr>
<tr>
<td>3</td>
<td>CD</td>
<td>8.12 E-4</td>
</tr>
<tr>
<td>4</td>
<td>CD</td>
<td>4.80 E-5</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>IE</th>
<th>ACC</th>
<th>LPI</th>
<th>LPR</th>
<th>ID</th>
<th>Out</th>
<th>Branch Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>OK</td>
<td>SAPHIRE: 0.99187</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>CD</td>
<td>RAVEN: 0.99176</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>CD</td>
<td>SAPHIRE: 7.27E-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>OK</td>
<td>RAVEN: 7.365E-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>CD</td>
<td>SAPHIRE: 8.12E-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>CD</td>
<td>RAVEN: 8.744E-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>SAPHIRE: 4.80E-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>RAVEN: 5.712E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>RAVEN: 4.242E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>RAVEN: 5.036E-13</td>
</tr>
</tbody>
</table>
Results

• RIMs:
 – Drastic decrease for basic events associated to ACC
 – RIM analysis considered a small subset of the simulated data

• What about the rest of the data?
 – Measure safety margin (SM):
 \[SM = 2200 - \text{PCT} \]
 – Characterize the pdf of SM
 • mean, std. dev.
Summary

• Classical RIMs can be generated from simulation based data

• Rationale: classical and dynamic PRA can coexist
 – Reduce ET/FT conservatisms
 – Employs simulation-based success criteria
 – Measure safety margins

• Hybrid PRA:
 – Start from classical PRA model
 – Validate outcome and probability of all ET branches
 • measure safety margins
 – Perform UQ on simulation models for borderline ET branches
 – Introduce time-dependent elements (e.g. recovery) for specific event sequences