

Advancing the Science of Safety

EXELON ECONOMIC ENTERPRISE RISK MODELING OF A BWR

Donald Dube, Brian Albinson, Robert Wolfgang, Michael Saunders, and Gregory Krueger September 24-28, 2017

PSA 2017, Pittsburgh, PA

TOPICS FOR DISCUSSION

Concept Overview of approach Insights

THE CONCERN

PRA 'SUCCESS' or 'OK' sequences may avoid core damage but could have significant economic impact on plant assets:

- PWR Feed & Bleed
- BWR Containment venting
- Some FLEX strategies

ECONOMIC ENTERPRISE RISK*

* Stopping short of core damage

OVERVIEW OF APPROACH

NRC MANAGEMENT DIRECTIVE 8.3

Estimated Conditional Core Damage Probability (CCDP)							
CCDP < 1E-6	1E-6 – 1E-5	1E-5 – 1E-4	1E-4 – 1E	-3 CCDP > 1E-3			
No additional inspection							
	Special inspection						
		A	іт				
				ΙΙΤ			

REGULATORY IMPACT – RULES OF THUMB

"Dark" Red (CCDP > 10⁻³): > \$300 million

SAMPLE EVENT CASUALTY DATA

Event	Plant Impact State	Nominal Outage Duration	Median Cost Bin	Comment
Uncomplicated reactor trip	PI6	Days to 1 week	C6	Event data
Loss of offsite power	PI7	2 weeks	C7	Event data
Fire in main transformer	PI8	10 weeks	C8	STP fire, Perry replacement
Steam generator tube rupture	PI9	1 year	С9	IP-2 event
PWR feed & bleed – long duration through recirculation	PI9	1 year	C9	Judgment, pairwise comparison
Medium LOCA	PI10	> 2 years	C10	Judgment, pairwise comparison

MODIFY EXISTING PRA MODEL

www.jensenhughes.com

BASELINE RESULTS FOR BWR PILOT

ECONOMIC RISK

- Small fraction of the total value of electrical production, but
- Significantly greater than maximum averted cost risk (MACR) from severe accident mitigation alternatives (SAMA) assessment under license renewal

RISK BY INITIATOR (FPIE, NON-FLOOD)

www.jensenhughes.com

FPIE INSIGHTS

- CRisk driven by Turbine Trip and unplanned manual shutdown (about 70% of total economic risks).
- Address single-point vulnerabilities resulting in reactor/turbine trip
 - Acquisition of portable compressor and dryer for use during maintenance on an installed instrument air (IA) compressor
 - Avoidance of main steam isolation valve closure

INSIGHTS FOR INTERNAL FLOODING

About 73% of economic risk from IF is due to moderate-to-high consequence events (\$30 million - \$100 million)

- OPRA model for CDF calculation may be inappropriate for best-estimate economic risk assessment
 - Reconsider assumptions regarding equipment damage
 - Adjust some human error probabilities (HEPs) on isolation

STUDY REINFORCED GOOD PRACTICES

Expansion joints on the circulating water pumps are inspected every refueling outage. Furthermore, the outside of the expansion joints can be observed for gross leakage during shift rounds.

Expansion joints are replaced at the rate of 5out-of-35 every refueling outage.

INSIGHTS FOR FIRE

- Generally, fair correlation between contribution to CDF and contribution to economic risk from fire events
- Sive fire events contribute to 50% of fire CDF and 42% of economic risk
 - However, catastrophic turbo-generator fire is a small contributor to CDF but large contributor to economic risk

PREVENTION AND MITIGATION

FLEX equipment

Incipient fire detection

www.jensenhughes.com

ALL OTHER THINGS BEING EQUAL...

- Consideration of economic risk in cost-benefit evaluations would tend to shift strategy from one of *mitigation* to one of *prevention*
 - Enhanced pipe inspection over internal flood mitigation
- Mitigation strategies need to consider whether in this economic and regulatory environment plant would ever run again
 - PWR non-safety auxiliary feedwater pump preferred over feed & bleed strategy

FLEX

- Strategy to inject raw water into reactor pressure vessel or steam generators can have economic consequences
- Due to low frequency, economic risk from projected FLEX events is very low
- Inadvertent injection due to poor design or error during installation or periodic surveillance could result in significant economic risk

SUMMARY

- Reduction of economic risk contributors does not come at the expense of CDF reduction
 - Reduction of the one can have the added benefit of reducing the other, and vice versa

QUESTIONS?

Contact

Donald A. Dube PhD +1 860-674-6044 email address ddube@jensenhughes.com

For More Information Visit www.jensenhughes.com

Advancing the Science of Safety