A MULTI-STATE PHYSICS MODELING FOR ESTIMATING THE SIZE- AND LOCATION-DEPENDENT LOSS OF COOLANT ACCIDENT INITIATING EVENT PROBABILITY

Francesco Di Maio¹, Davide Colli¹, Enrico Zio¹,², Liu Tao³, Jiejuan Tong³

¹Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
francesco.dimaio@polimi.it

²Chair System Science and the Energy Challenge, Fondation Electricité de France (EDF), CentraleSupelec, Université Paris Saclay, 92290 Paris, France

³Institute of Nuclear and New Energy Technology, Tsinghua University, 100084 Beijing, China
In PRA, Loss of Coolant Accidents (LOCAs) are categorized with respect to:

- Size
- Location

Both can indeed influence the **timing** and **duration** of the **mitigating action** \(^{[1,2]}\)

For each category, different strategies of intervention are to be designed for preventing core damage.

Problem Statement: LOCAs in FTs/ETs

PIPING FAILURE PROBABILITY ESTIMATION

Statistics based on field data

Pros: consolidated approaches that fit real failure data

Cons: lack of data due to the high reliability of nuclear piping system

by
by
by
Stochastic Model (e.g., Markov Chain Model (MCM))
Probabilistic Fracture Mechanics (PFM)
Problem Statement: LOCAs in FTs/ETs

PIPING FAILURE PROBABILITY ESTIMATION

Statistics based on field data

Pros: consolidated approaches that fit real failure data
Cons: lack of data due to the high reliability of nuclear piping system

Stochastic Model (e.g., Markov Chain Model (MCM))

Pros: explicit modelling of crack initiation and growth
Cons:

Probabilistic Fracture Mechanics Model (PFM)

Pros:
Cons: • Demanding on data for parameters calibration
• No consideration of the the effects of inspections and detection strategies
Problem Statement: LOCAs in FTs/ETs

PIPING FAILURE PROBABILITY ESTIMATION

Statistics based on field data

Cons: lack of data due to the high reliability of nuclear piping system

Pros: consolidated approaches that fit real failure data

Stochastic Model (e.g., Markov Chain Model (MCM))

Cons: explicit modelling of crack initiation and growth

Pros: explicit modelling of the interactions between damage mechanisms and inspection, detection and repair strategies

Probabilistic Fracture Mechanics Model

Cons: • constant transition rates: exponentially distributed holding times not acceptable for components with different geometry, material properties

Pros: • Demanding on data for parameters calibration

• No consideration of the effects of inspections and detection strategies
Problem Statement: LOCAs in FTs/ETs

PIPING FAILURE PROBABILITY ESTIMATION

Statistics based on field data

Stochastic Model (e.g., Markov Chain Model (MCM))

Probabilistic Fracture Mechanics Model

Multi-state transition setting + scarce data available + Physics modelling

Multi-State Physics Model (MSPM)

Pros: • Feasible also with scarce data • effects of the repair strategy included • Applicable also to new piping systems because the degradation process is described by physical models

Cons: estimation of transition rates can be challenging
The degradation process is described by transitions among discrete states:

- **S**: no detectable damage
- **F**: detectable flaw
- **L**: detectable leak
- **R**: rupture

The Approach: Multi-State Physics Model (MSPM)

- The transition rates, $\lambda_{i,j}(t_{i,j}, \delta)$, are assumed to be functions of:
 - The influencing factors δ (i.e., material properties)
 - The holding times $\tau_{i,j}$

- $P(t, \delta) = \{p_S(t, \delta), p_F(t, \delta), p_L(t, \delta), p_R(t, \delta)\}$

Monte Carlo (MC) simulation framework
The case study

Component: *mixing tee* between the hot and cold legs in the Reactor Cooling System (RCS) of a Pressurized Water Reactor (PWR)

Operating conditions:
- Pressure: 36 bar
- Hot leg water temperature: 180°C
- Cold leg water temperature: 20°C

Piping material: *austenitic stainless steel 304L*
Transition rates evaluation procedure:

1) Build the physical models that describe the degradation process
Degradation mechanism: *thermal fatigue*

- Temperature fluctuation at the inner surface \(r_i \) of the pipe due to turbulent mixing or vortices

 Hypothesis: *sinusoidal transient thermal loading*
1) Degradation mechanism description

Degradation mechanism: *thermal fatigue*

- Temperature fluctuation at the inner surface (r_i) of the pipe due to turbulent mixing or vortices

Hypothesis: *sinusoidal transient thermal loading*

\[
\theta(r_i, t) = \theta_0 \cdot \sin(2\pi \phi)
\]
Degradation mechanism: \textit{thermal fatigue}

- Temperature fluctuation at the inner surface (r_i) of the pipe due to turbulent mixing or vortices

Hypothesis: \textit{sinusoidal transient thermal loading}

\[
\theta(r_i, t) = \theta_0 \cdot \sin(2\pi \phi)
\]

\textbf{Amplitude} \quad \theta_0

uniform distribution:
- Lower value 0 °C
- Upper value 60 °C
Degradation mechanism: *thermal fatigue*

- Temperature fluctuation at the inner surface \((r_i)\) of the pipe due to turbulent mixing or vortices

Hypothesis: *sinusoidal transient thermal loading*

\[
\theta(r_i, t) = \theta_0 \cdot \sin(2\pi \phi)
\]

- **Amplitude** \(\theta_0\)
 - Uniform distribution:
 - Lower value 0 °C
 - Upper value 60 °C

- **Frequency** \(\phi\)
 - Uniform distribution:
 - Lower value \(10^{-4}\) Hz
 - Upper value \(10^2\) Hz
First degradation step: from No detectable damage S to detectable Flaw F

Circumferential Crack Onset
Transition rates evaluation procedure:

1) Build the physical models that describe the degradation process

2) Sample the values of the parameters δ of the physical models
First degradation step: from No detectable damage \textbf{S} to detectable Flaw \textbf{F}.

\[\theta(r_i, t) = \theta_0 \cdot \sin(2\pi \phi) \]

Stress distribution:
- radial \(\sigma_r(r) \)
- axial \(\sigma_z(r) \)
- hoop \(\sigma_\theta(r) \)
MC simulation: transition rate evaluation

Transition rates evaluation procedure:

1) Build the physical models that describe the degradation process

2) Sample the values of the parameters $\bar{\delta}$ of the physical models

3) Select a characteristic variable x that \textit{describes the degradation process}
First degradation step: from No detectable damage S to detectable Flaw F

Circumferential Crack Onset

$\theta(r_i, t) = \theta_0 \cdot \sin(2\pi \phi)$
Transition rates evaluation procedure:

1) Build the physical models that describe the degradation process.

2) Sample the values of the parameters δ of the physical models.

3) Select a characteristic variable x that describes the degradation process.

4) Select a threshold value X_{cr} that defines transition among states.
4) Setting of the threshold value X_{cr}

First degradation step: *from No detectable damage S to detectable Flaw F*

Circumferential Crack Onset

\[\theta(r_t, t) = \theta_0 \cdot \sin(2\pi \phi) \]

Number of thermal cycles to have the crack onset

- radial $\sigma_r(r)$
- axial $\sigma_z(r)$
- hoop $\sigma_\theta(r)$
4) Setting of the threshold value X_{cr}

First degradation step: *from No detectable damage S to detectable Flaw F*

Circumferential crack Onset

$$N_f \quad \tau_{S,F}(\text{years}) = \frac{N_f}{\phi \cdot 3600 \cdot 24 \cdot 365}$$

$$\theta(r_i, t) = \theta_0 \cdot \sin(2\pi\phi)$$

- radial $\sigma_r(r)$
- axial $\sigma_z(r)$
- hoop $\sigma_\theta(r)$

$\varepsilon_{eq}^{tot} \quad N_f$
Transition rates evaluation procedure:

1) Build the physical models that describe the degradation process.

2) Sample the values of the parameters δ of the physical models.

3) Select a characteristic variable x that describes the degradation process.

4) Select a threshold value X_{cr} that defines transition among states.

5) Simulate the degradation process N_c times for estimating the cumulative distribution function $F(\tau_{i,j} | \delta)$ of $\tau_{i,j}$.
5) Degradation process simulation for estimating $F(\tau_{S,F} | \delta)$

First degradation step: *from No detectable damage S to detectable Flaw F*

![Circumferential crack Onset](image)

- Circumferential crack:
 - $\theta(r, t) = \theta_0 \cdot \sin(2\pi \phi)$
 - Radial $\sigma_r(r)$
 - Axial $\sigma_z(r)$
 - Hoop $\sigma_\theta(r)$

- Number of simulation $N_c = 10000$

- $\tau_{S,F}$

- $F(\tau_{S,F} | \delta)$

- ε_{eq}^{tot}

- N_f
First degradation step: from No detectable damage S to detectable Flaw F

Circumferential crack Onset

\[F(\tau_{S,F}|\delta) \rightarrow \lambda_{S,F}(\tau_{S,F}, \delta) \]
Application to a PWR piping system: developing the MSPM

First degradation step: *from No detectable damage S to detectable Flaw F*

Circumferential crack Onset

\[\lambda_{S,F}(\tau_{S,F}, \delta) \]

\[\theta(r_i, t) = \theta_0 \cdot \sin(2\pi \phi) \]

radial \(\sigma_r(r) \)

axial \(\sigma_z(r) \)

hoop \(\sigma_\theta(r) \)

\[\varepsilon_{eq} \]

\[\tau_{S,F} \]

\[N_f \]

\[F(\tau_{S,F} | \delta) \]
Rupture probability evaluation \(p_R(t, \delta) \)

Rupture: crack size reaches the whole circumference

Hypotheses:
- the considered piping system is not subjected to severe loading conditions
- repair transition rates are considered constant and the state transition time follows an exponential distribution as in [Fleming, 2004]

Developed MSPM: LOCA probability evaluation

Size and location-dependent LOCA probability evaluation

LOCA: Loss of Reactor Coolant Accident due to the breach in the Reactor Coolant pressure boundary

Hypotheses:
- breaches of size $254 \, mm < x \leq 287.3 \, mm$ (LOCA category 14) are accounted as leakages
- repair transition rates are considered constant and the state transition time will follow exponential distribution as in [Fleming, 2004]

Size and location-dependent LOCA probability evaluation

LOCA: Loss of Reactor Coolant Accidenti due to the breach in the Reactor Coolant pressure boundary

Hypotheses:
- Breaches of size $254 \, mm < x \leq 287.3 \, mm$ (LOCA category 14) are accounted as leakages
- Repair transition rates are considered constant and the state transition time will follow exponential distribution as in [Fleming, 2004]

Size and location-dependent LOCA probability evaluation

Break size: $254 \, mm < x \leq 287.3 \, mm$

- At early stage, $p_L(t, \delta)$, obtained with the MSPM is smaller than $p_L(14, a, t)$ obtained by GSI-191

- At larger time, the probabilities $p_L(t, \delta)$, obtained with the MSPM, is larger than $p_L(14, a, t)$ obtained by GSI-191

Developed MSPM model: LOCA probability evaluation

- Inappropriate maintenance
- Underestimated risk
Conclusions

Safety assessment of NPPs

Failure probability estimation integrating Physical modelling

• MSPM framework applied to the Size and location-dependent Loss of Coolant Accident (LOCA) probability evaluation occurring in the mixing tee of the RCS of a PWR

• MC simulation framework for the transition rates estimation

• Comparison with benchmark results shows the benefits of introducing physics models not to underestimate the failure probability